Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 815
Filtrar
1.
Mar Pollut Bull ; 202: 116308, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574503

RESUMO

The distribution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) in surface soils from the petroleum industrial area of the Yellow River Delta (YRD) in China were investigated. The total concentrations of 16 PAHs ranged from 19.6 to 1560 ng/g, while 22 HPAHs ranged from 2.44 to 14.9 ng/g. Moreover, a high degree of spatial distribution heterogeneity was observed for both PAHs and HPAHs, which is likely attributed to the distinct industrial activities in studied area. The combustion of biomass and petroleum were identified as primary sources of soil PAHs and HPAHs in the YRD. Furthermore, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[g,h,i]perylene exhibited high ecological risks (with risk quotients of 1.47, 1.44, and 1.02, respectively) in specific sites within the YRD. Considering the high toxicity of HPAHs and their potential joint environmental effects with PAHs, continuous attention should be directed towards the environmental risks associated with both PAHs and HPAHs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38589591

RESUMO

In recent years, as global industrialization has intensified, environmental pollution has become an increasingly serious problem. Improving water quality and achieving wastewater purification remain top priorities for environmental health initiatives. The Fenton process is favored by researchers due to its high efficiency and ease of operation. Central to the Fenton process is a catalyst used to activate hydrogen peroxide, rapidly degrading pollutants, improving water quality. Among various catalysts developed, copper-based catalysts have attracted considerable attention due to their affordability, high activity, and stable performance. Based on this, this paper reviews the development of copper-based Fenton systems over the past decade. It mainly involves the research and application of copper-based catalysts in different Fenton systems, including photo-Fenton, electro-Fenton, microwave-Fenton, and ultrasonic-Fenton. This review provides a fundamental reference for the subsequent studies of copper-based Fenton systems, contributing to the goal of transitioning these systems from laboratory research into practical environmental applications.

3.
Reprod Biomed Online ; 48(6): 103814, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38569224

RESUMO

RESEARCH QUESTION: What is the effect of exosomes derived from bone marrow mesenchymal stem cells (MSC-Exos) on the pyroptosis and recovery of granulosa cells in autoimmune premature ovarian insufficiency (POI)? DESIGN: In vitro, KGN cells were exposed to interferon-gamma to simulate immune injury. Samples were collected after a 48 h incubation with MSC-Exos (30 µg/ml). The cell viability, secretion of oestrogen and expression of key molecules in pyroptosis and the nuclear factor kappa B (NF-κB) pathway were tested. In vivo, the BALB/c mouse model of autoimmune POI model induced by zona pellucida glycoprotein 3 was used. Fertility testing and sample collection were applied 4 weeks after the ovarian subcapsular injection of MSC-Exos (150 µg for each ovary). Hormone concentration measurements, follicle counting and pyroptotic pathway analyses were conducted for each group. RESULTS: In vitro, MSC-Exos significantly promoted the proliferation rate and secretion of oestrogen, while at the same time suppressing apoptosis and pyroptosis. In vivo, exosomal treatment normalized the irregular oestrous cycles, rescued the follicular loss and increased the pregnancy rate and number of offspring in POI mice. Elevated serum concentrations of oestrogen and anti-Müllerian hormone, as well as decreased concentrations of FSH and interleukin-1ß, were shown. Furthermore, MSC-Exos down-regulated the expression of the NLRP3/Casp1/GSDMD pathway and inhibited activation of the NF-κB pathway. CONCLUSIONS: These findings demonstrate for the first time that MSC-Exos exert a significant effect on restoring ovarian function in autoimmune POI in vivo and in vitro by suppressing the NLRP3/Casp1/GSDMD pathway and pyroptosis. The NF-κB pathway may contribute to the regulation of NLRP3-related pyroptosis.

4.
Biomed Pharmacother ; 174: 116529, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569275

RESUMO

Myocardial infarction (MI) is the primary cause of cardiac mortality. Esculentoside A (EsA), a triterpenoid saponin, has anti-inflammatory and antioxidant activities. However, its effect on MI remains unknown. In this study, the protective effect and mechanisms of EsA against MI were investigated. EsA significantly alleviated hypoxia-induced HL-1 cell injury, including increasing cell viability, inhibiting reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) and lactate dehydrogenase (LDH) leakage. In mouse MI model by left coronary artery (LAD) ligating, EsA obviously restored serum levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI), superoxide dismutase (SOD) and malondialdehyde (MDA). In addition, the cardioprotective effect of EsA was further confirmed by infarct size, electrocardiogram and echocardiography. Mechanistically, the targeted binding relationship between EsA and C-X-C motif chemokine receptor 2 (CXCR2) was predicted by molecular docking and dynamics, and validated by small molecule pull-down and surface plasmon resonance tests. EsA inhibited CXCR2 level both in vitro and in vivo, correspondingly alleviated oxidative stress by suppressing NOX1 and NOX2 and relieved inflammation through inhibiting p65 and p-p65. It demonstrated that EsA could play a cardioprotective role by targeting CXCR2. However, the effect of EsA against MI was abolished in combination with CXCR2 overexpression both in vitro and in vivo. This study revealed that EsA showed excellent cardioprotective activities by targeting CXCR2 to alleviate oxidative stress and inflammation in MI. EsA may function as a novel CXCR2 inhibitor and a potent candidate for the prevention and intervention of MI in the future.

5.
Reprod Biomed Online ; 48(6): 103815, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582043

RESUMO

RESEARCH QUESTION: What is the effect of micro-RNA (miR)-21-5p-loaded bone marrow mesenchymal stem cell-derived exosomes (miR-21-Exo) on autoimmune premature ovarian insufficiency (POI)? DESIGN: The Cell Counting Kit 8 (CCK8) assay, fluorescence-activated cell sorting, western blotting, quantitative reverse transcriptase (qRT)-PCR and enzyme-linked immunosorbent assay (ELISA) verified the effect of miR-21-Exo on interferon-γ (IFN-γ)-induced KGN cells. qRT-PCR, western blotting and dual-luciferase reporter gene assays verified that miR-21-Exo mediated Msh homeobox 1 (MSX1) regulation of the Notch signalling pathway and that miR-21 interacted directly with MSX1. The effects of miR-21-Exo on the ovaries were verified by monitoring of the oestrous cycle, haematoxylin and eosin staining, follicle counts, ELISA, immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL), western blotting and qRT-PCR. RESULTS: The results showed that miR-21-Exo promoted IFN-γ-induced KGN cell proliferation and hormone synthesis, and inhibited apoptosis. Using dual-luciferase reporter gene assays, miR-21 and MSX1 were shown to have direct interactions. Moreover, the findings elucidated that miR-21-Exo inhibited cell apoptosis and promoted hormone synthesis by mediating MSX1 to regulate the Notch signalling pathway. miR-21-Exo restored the ovarian structure in a mouse model of autoimmune POI, promoted endocrine function and proliferation, and inhibited apoptosis and inflammation in vivo. CONCLUSIONS: This study demonstrates that miR-21-Exo regulates the MSX1-mediated Notch signalling pathway to inhibit granulosa cell apoptosis and improve hormone synthesis function, providing insight into a potential mechanism of molecular therapy for the treatment of autoimmune POI.

6.
Sci Total Environ ; 927: 172256, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583613

RESUMO

The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.


Assuntos
Monitoramento Ambiental , Microbiologia do Solo , Poluentes do Solo , Solo , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes do Solo/análise , China , Anaerobiose , Solo/química , Aerobiose
7.
Cancer Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635903

RESUMO

Recurrent abnormalities in immune surveillance-related genes affect the progression of diffuse large B-cell lymphoma (DLBCL) and modulate the response to therapeutic interventions. CD58 interacts with the CD2 receptor on T cells and natural killer (NK) cells and is recurrently mutated and deleted in DLBCL, suggesting it may play a role in regulating antitumor immunity. Herein, we comprehensively analyzed the genomic characteristics of CD58 through targeted next-generation sequencing, RNA-sequencing, whole-exome sequencing, and single-cell RNA-sequencing in patients with newly diagnosed DLBCL. The CD58 mutation rate was 9.1%, and the copy number loss rate was 44.7% among all enrolled DLBCL patients. Notably, CD58 genetic alterations, along with low CD58 expression, significantly correlated with reduced rates of response to R-CHOP therapy and inferior progression-free and overall survival. Single-cell RNA sequencing revealed that CD58 expression in tumor cells was negatively correlated with CD8+ T cell exhaustion/dysfunction status. Insufficient T-cell activation resulting from CD58 alterations could not be attributed solely to CD2 signaling. CD58 inhibited the activity of the JAK2/STAT1 pathway by activating the Lyn/CD22/SHP1 axis, thereby limiting PD-L1 and IDO expression. Elevated PD-L1 and IDO expression in CD58 deficient DLBCL cells led to immune evasion and tumor-intrinsic resistance to CAR T-cell therapy. Direct activation of CD58-CD2 costimulatory signaling in combination with anti-PD-L1 blockade or IDO inhibitor sensitized CD58-deficient DLBCL to CAR T-cell therapy. Collectively, this work identified the multiple roles of CD58 in regulating antitumor immune responses in DLBCL.

8.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612083

RESUMO

In this paper, ordinary Portland cement, ultrafine cement, polyurethane, and epoxy resin were selected as typical grouting materials. Grouting simulation tests were first conducted to prepare the grouted concrete crack sample. The effect of concrete crack parameters (i.e., crack aperture and roughness), grout water-cement ratio, and grouting pressure on the water-plugging performance of different grouting materials was explored through the impermeability test. The microstructure of grouted concrete cracks was analyzed by means of scanning electron microscopy (SEM) and computed tomography (CT), and the difference in water-plugging performance of different grouting materials was explained at the micro level. The results show that the impermeability of the four grouting materials was ranked as follows: Epoxy resin > polyurethane > ultra-fine cement > ordinary Portland cement. The concrete cracks grouted by epoxy resin have the highest plugging failure water pressure and the lowest permeability, which is the optimal grouting material. The effectiveness of crack grouting in water-plugging was directly proportional to the grouting pressure, provided the pressure did not exceed a certain value. When the pressure surpassed the threshold, the increase in pressure did not have a significant impact on the water plugging performance. For the two cement-based materials, the threshold pressure was 1 MPa, while for the other two chemical grouts, it was 2 MPa. The two cement-based grouts with a water-cement ratio of 0.8 showed optimal water-plugging performance. The water-plugging performance of ordinary Portland cement paste, ultra-fine cement pastes, and polyurethane grout was negatively correlated with crack aperture and positively correlated with crack roughness. However, the water-plugging performance of epoxy resin grout was not affected by crack aperture or roughness.

9.
Biochim Biophys Acta Mol Basis Dis ; : 167195, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648901

RESUMO

Acne is a common chronic inflammatory disease of the pilosebaceous unit. Transient receptor potential vanilloid 3 (TRPV3) is an ion channel that is involved in inflammatory dermatosis development. However, the involvement of TRPV3 in acne-related inflammation remains unclear. Here, we used acne-like mice and human sebocytes to examine the role of TRPV3 in the development of acne. We found that TRPV3 expression increased in the skin lesions of Propionibacterium acnes (P. acnes)-injected acne-like mice and the facial sebaceous glands (SGs) of acne patients. TRPV3 promoted inflammatory cytokines and chemokines secretion in human sebocytes and led to neutrophil infiltration surrounding the SGs in acne lesions, further exacerbating sebaceous inflammation and participating in acne development. Mechanistically, TRPV3 enhanced TLR2 level by promoting transcriptional factor p-FOSL1 expression and its binding to the TLR2 promoter, leading to TLR2 upregulation and downstream NF-κB signaling activation. Genetic or pharmacological inhibition of TRPV3 both alleviated acne-like skin inflammation in mice via the TL2-NF-κB axis. Thus, our study revealed the critical role of TRPV3 in sebaceous inflammation and indicated its potential as an acne therapeutic target.

10.
Small Methods ; : e2400249, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634403

RESUMO

Aqueous zinc-ion batteries (AZIBs) directly using zinc metal anodes are promising candidates for grid-scale energy storage systems due to their intrinsic high theoretical capacity, high safety, and environmental friendliness. However, the uncontrolled dendrite growth and water-triggered side reactions seriously plague its practical application. Herein, a cost-effective and green additive, maltodextrin (MD) is presented, to simultaneously guide the smooth Zn deposition and inhibit the occurrence of water-related side reactions. Combing experimental characterizations and theoretical calculations shows that the MD molecules could reconstruct the Helmholtz plane, induces a preferential growth of zinc along the (002) plane, and the optimized regulation of the Zn2+ diffusion path and deposition location also results in the formation of fine-grained Zn deposition layers, thereby inhibiting dendrite growth. In addition, MD molecules readily adsorb to the zinc anode surface, which isolates water molecules from direct contact with the zinc metal, reducing hydrogen precipitation reactions and inhibiting the formation of by-products. Consequently, the Zn||Zn symmetric cell with MD achieves ultra-long stable cycles of up to 5430 h at 1 mA cm-2 and 1 mA h cm-2, and the Cu||Zn asymmetric cell can stable cycle 1000 cycles with an average coulomb efficiency of 99.78%.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38627332

RESUMO

This work develops a novel perovskite Sr2FeNi0.35Mo0.65O6-δ (SFN0.35M) simultaneously using as a fuel electrode and oxygen electrode in a reversible solid oxide cell (RSOC). SFN0.35M shows outstanding electrocatalytic activity for hydrogen oxidation, hydrogen evolution, oxygen reduction, and oxygen evolution. In situ exsolution and dissolution of Fe-Ni alloy nanoparticles in SFN0.35M is revealed. In a reducing atmosphere, SFN0.35M shows in situ exsolution of Fe-Ni alloy nanoparticles, and then the Fe-Ni alloy is reoxidized into SFN0.35M while converting into an oxidizing atmosphere. The polarization resistances of SFN0.35M electrode are 0.043 Ω cm2 in 20% O2-N2 and 0.064 Ω cm2 in H2 at 850 °C. Moreover, symmetric fuel cells using the SFN0.35M electrode achieves a maximum power density of 0.501 W cm-2 at 850 °C in H2 fuel, while the symmetric electrolysis cell has an electrolysis current density of 0.794 A cm-2 at 1.29 V in 90% H2O-10% H2 at 850 °C. It is the first time we demonstrate that the cell voltage of symmetrical cell at 0.5 A cm-2 in the fuel cell mode and -0.5 A cm-2 in the electrolysis cell mode can be fully recovered in 10 electrode alternating cycles and therefore demonstrate the possibility that SFN0.35M can be used in a fully symmetric RSOC stack with electrode alternating functions.

12.
iScience ; 27(4): 109446, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550999

RESUMO

The Hunga Tonga-Hunga Ha'apai (HTHH) volcano eruption received worldwide attention due to its magnitude and potential effects on environment and climate. However, the operational sulfur dioxide (SO2) products mis-estimated SO2 emissions under volcanic conditions due to large uncertainties in the assumptions of SO2 plume altitude. That might have occurred in previous volcanic eruptions and misled understanding of the evolution of sulfate aerosols in the atmosphere and their impact on global climate. Here, we simultaneously retrieved the volcanic SO2 and its plume altitude from the Troposphere Monitoring Instrument (TROPOMI) and the Environment Monitoring Instrument-2 (EMI-2), exploring the SO2 burden, distribution, and evolution from January 14 to 17. We captured multiple eruptions with the second eruption emitting far more SO2 than the first. Total emissions exceeded 900 kt, significantly higher than those from operational products. Our inferred emission fluxes and injection heights offer valuable references for climate modeling and submarine volcano studies.

13.
Discov Oncol ; 15(1): 65, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446257

RESUMO

BACKGROUND: The differential expression, biological function, and ceRNA regulatory mechanism of lncRNA XIST in bladder cancer (BC) were investigated, and its clinical values for the early diagnosis of bladder cancer patients were elucidated. METHODS: qRT-PCR was employed to detect the expression patterns of lncRNA XIST, miR-129-5p and TNFSF10. The biological functions were measured by CCK8 assay, wound healing assay and transwell assay. Bioinformatics analysis and Dual-Luciferase reporter assay were employed to evaluate the interactions between the lncRNA XIST, miR-129-5p and TNFSF10. RESULTS: LncRNA XIST and TNFSF10 were highly expressed and miR-129-5p was low expressed (P < 0.05) in bladder cancer cell line. The depletion of lncRNA XIST inhibited BC proliferation, migration and invasion. Mechanistically, lncRNA XIST could sponge miR-129-5p to regulate TNFSF10 expression in bladder cancer. Furthermore, compared with adjacent tissues, lncRNA XIST and miR-129-5p were lowly expressed (P < 0.01) in bladder cancer tissues, and TNFSF10 was highly expressed (P < 0.001). miR-129-5p and TNFSF10 were associated with the risk of bladder cancer (P < 0.05); the difference in AUC values for the diagnosis of bladder cancer by lncRNA XIST (AUC = 0.739), miR-129-5p (AUC = 0.850) and TNFSF10 (AUC = 0.753) was statistically significant (P < 0.01), and the three genes combined AUC was 0.900, 95%CI was 0.842-0.958 with a sensitivity of 83.3% and specificity of 86.7%. CONCLUSION: XIST, an elevated lncRNA in bladder cancer, inhibition of which could suppress the progression of BC. LncRNA XIST and miR-129-5p could form ceRNA to regulate the expression of TNFSF10.

14.
Math Biosci Eng ; 21(3): 4117-4141, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38549321

RESUMO

By using the Ornstein-Uhlenbeck (OU) process to simulate random disturbances in the environment, and considering the influence of jump noise, a stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala mutualism model were studied. First, the existence of the global solution of the stochastic Gilpin-Ayala mutualism model is proved by the appropriate Lyapunov function. Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala mutualism model is discussed. Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala mutualism model is obtained. Finally, the extinction of the stochastic Gilpin-Ayala mutualism model is proved. The theoretical results were verified by numerical simulations.

15.
Talanta ; 273: 125922, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503121

RESUMO

Rapid and sensitive detection of nucleic acids has become crucial in various fields. However, most current nucleic acid detection methods can only be used in specific scenarios, such as RT-qPCR, which relies on fluorometer for signal readout, limiting its application at home or in the field due to its high price. In this paper, a universal nucleic acid detection platform combing CRISPR/Cas12a and strand displacement amplification (CRISPR-SDA) with multiple signal readout was established to adapt to different application scenarios. Nucleocapsid protein gene of SARS-CoV-2 (N gene) and hepatitis B virus (HBV) DNA were selected as model targets. The proposed strategy achieved the sensitivity of 53.1 fM, 0.15 pM, and 1 pM for N gene in fluorescence mode, personal glucose meter (PGM) mode and lateral flow assay (LFA) mode, respectively. It possessed the ability to differentiate single-base mismatch and the presence of salmon sperm DNA with a mass up to 105-fold of the targets did not significantly interfere with the assay signal. The general and modular design idea made CRISPR-SDA as simple as building blocks to construct nucleic acid sensing methods to meet different requirements by simply changing the SDA template and selecting suitable signal report probes, which was expected to find a breadth of applications in nucleic acids detection.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Masculino , Humanos , Sistemas CRISPR-Cas , Sêmen , Bioensaio , DNA , Técnicas de Amplificação de Ácido Nucleico
16.
J Plant Physiol ; 296: 154218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490054

RESUMO

Jasmonates (JAs) are among the main phytohormones, regulating plant growth and development, stress responses, and secondary metabolism. As the major regulator of the JA signaling pathway, MYC2 also plays an important role in plant secondary metabolite synthesis and accumulation. In this study, we performed a comparative transcriptome analysis of Lycoris aurea seedlings subjected to methyl jasmonate (MeJA) at different treatment times. A total of 31,193 differentially expressed genes (DEGs) were identified by RNA sequencing. Among them, 732 differentially expressed transcription factors (TFs) comprising 51 TF families were characterized. The most abundant TF family was WRKY proteins (80), followed by AP2/ERF-EFR (67), MYB (59), bHLH (52), and NAC protein (49) families. Subsequently, by calculating the Pearson's correlation coefficient (PCC) between the expression level of TF DEGs and the lycorine contents, 41 potential TF genes (|PCC| >0.8) involved in lycorine accumulation were identified, including 36 positive regulators and 5 negative regulators. Moreover, a MeJA-inducible MYC2 gene (namely LaMYC2) was cloned on the basis of transcriptome sequencing. Bioinformatic analyses revealed that LaMYC2 proteins contain the bHLH-MYC_N domain and bHLH-AtAIB_like motif. LaMYC2 protein is localized in the cell nucleus, and can partly rescue the MYC2 mutant in Arabidopsis thaliana. LaMYC2 protein could interact with most LaJAZs (especially LaJAZ3 and LaJAZ4) identified previously. Transient overexpression of LaMYC2 increased lycorine contents in L. aurea petals, which might be associated with the activation of the transcript levels of tyrosine decarboxylase (TYDC) and phenylalanine ammonia lyase (PAL) genes. By isolating the 887-bp-length promoter fragment upstream of the start codon (ATG) of LaTYDC, we found several different types of E-box motifs (CANNTG) in the promoter of LaTYDC. Further study demonstrated that LaMYC2 was indeed able to bind the E-box (CACATG) present in the LaTYDC promoter, verifying that the pathway genes involved in lycorine biosynthesis could be regulated by LaMYC2, and that LaMYC2 has positive roles in the regulation of lycorine biosynthesis. These findings demonstrate that LaMYC2 is a positive regulator of lycorine biosynthesis and may facilitate further functional research of the LaMYC2 gene, especially its potential regulatory roles in Amaryllidaceae alkaloid accumulation in L. aurea.


Assuntos
Acetatos , Alcaloides de Amaryllidaceae , Arabidopsis , Lycoris , Fenantridinas , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alcaloides de Amaryllidaceae/metabolismo , Lycoris/genética , Lycoris/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Transcriptoma , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
17.
Proc Natl Acad Sci U S A ; 121(14): e2317444121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527208

RESUMO

Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.

18.
Theor Appl Genet ; 137(3): 69, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441650

RESUMO

KEY MESSAGE: Twenty-eight QTLs for LLS disease resistance were identified using an amphidiploid constructed mapping population, a favorable 530-kb chromosome segment derived from wild species contributes to the LLS resistance. Late leaf spot (LLS) is one of the major foliar diseases of peanut, causing serious yield loss and affecting the quality of kernel and forage. Some wild Arachis species possess higher resistance to LLS as compared with cultivated peanut; however, ploidy level differences restrict utilization of wild species. In this study, a synthetic amphidiploid (Ipadur) of wild peanuts with high LLS resistance was used to cross with Tifrunner to construct TI population. In total, 200 recombinant inbred lines were collected for whole-genome resequencing. A high-density bin-based genetic linkage map was constructed, which includes 4,809 bin markers with an average inter-bin distance of 0.43 cM. The recombination across cultivated and wild species was unevenly distributed, providing a novel recombination landscape for cultivated-wild Arachis species. Using phenotyping data collected across three environments, 28 QTLs for LLS disease resistance were identified, explaining 4.35-20.42% of phenotypic variation. The major QTL located on chromosome 14, qLLS14.1, could be consistently detected in 2021 Jiyang and 2022 Henan with 20.42% and 12.12% PVE, respectively. A favorable 530-kb chromosome segment derived from Ipadur was identified in the region of qLLS14.1, in which 23 disease resistance proteins were located and six of them showed significant sequence variations between Tifrunner and Ipadur. Allelic variation analysis indicating the 530-kb segment of wild species might contribute to the disease resistance of LLS. These associate genomic regions and candidate resistance genes are of great significance for peanut breeding programs for bringing durable resistance through pyramiding such multiple LLS resistance loci into peanut cultivars.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Cromossomos
19.
Appl Opt ; 63(4): 1022-1031, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437400

RESUMO

Under-sampling is an advantageous way for lowering sampling circuit complexity in phase laser ranging while maintaining high modulated frequency operation. Improving the accuracy of the ranging system is the aim of the proposed selection criteria with involved under-sampling parameters. These parameters include signal frequency, sampling frequency, and calculation points. Setting the number of one periodic sampling points to be an integer power of 2 (p o w e r=2-6) optimizes the accuracy in integral periodic sampling. Levering up calculated periods with limited calculated points and averaging the calculated phase by employing the corresponding average parameter can both enhance accuracy in non-integral periodic sampling. These criteria are verified through derivation and simulation and are applied to the ranging system. The experimental results demonstrate that, by applying these selection criteria, the phase detection accuracy in the under-sampling ranging system can be potently improved without any pre-processing or algorithmic refinement.

20.
Small ; : e2312151, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438931

RESUMO

Rationally and precisely tuning the composition and structure of materials is a viable strategy to improve electrochemical deionization (EDI) performances, which yet faces enormous challenges. Herein, an eco-friendly biomimetic mineralization synthetic strategy is developed to synthesize the flower-like cobalt selenide/reduced graphene oxide (Bio-CoSe2 /rGO) composites and used as advanced sodium ion adsorption electrodes. Benefiting from the slow and controllable reaction kinetics provided by the biomimetic mineralization process, the flower-like CoSe2 is uniformly constructed in the rGO, which is endowed with robust architecture, substantial adsorption sites and rapid charge/ion transport. The Bio-CoSe2 /rGO electrode yields the maximum salt adsorption capacity and salt adsorption rate of 56.3 mg g-1 and 5.6 mg g-1 min-1 respectively, and 92.5% capacity retention after 60 cycles. These results overmatch the pristine CoSe2 and irregular granular CoSe2 /rGO synthesized by a hydrothermal method, proving the structural superiority of the Bio-CoSe2 /rGO composites. Furthermore, the in-depth adsorption kinetics study indicates the chemisorption nature of sodium ion adsorption. The structures of the Bio-CoSe2 /rGO composites after long term EDI cycles are intensively studied to unveil the mechanism behind such superior EDI performances. This study offers one effective method for constructing advanced EDI electrodes, and enriches the application of the biomimetic mineralization synthetic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...